
J .  Fluid Me&. (1989), vol. 208, p p .  115-126 

Printed in Great Britain 

115 

Lagrangian approach to the 
mean-field electrodynamics for turbulent fluids 

with arbitrary conductivities 

By L. L. KICHATINOV 
Siberian Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, 

PO Box 4, Irkutsk 33, USSR 

(Received 20 June 1988 and in revised form 2 February 1989) 

A modification is made to the traditional Lagrangian approach to the derivation of 
the mean EMF of turbulent fluids which allows for finite conductivities. 
Consideration is confined to the case of homogeneous, isotropic but generally mirror- 
non-invariant and compressible turbulence. The eddy magnetic diffusivity and the 
coefficient a: of the alpha-effect are expressed in terms of statistical moments of 
displacements of adjacent particles which undergo convective transport and 
microscopic diffusion in a turbulent flow. These expressions, being valid for arbitrary 
conductivities, reproduce known results in the cases of both very large and very 
small magnetic Reynolds numbers. Difficulties and advantages of the use of the 
results obtained for evaluations of the mean EMF are discussed. 

1. Introduction 
Mean-field electrodynamics considers the evolution of the mean magnetic field B 

in turbulent flows of conducting fluids. Formally, the problem is to find an adequate 
expression for the mean EMF, 

that contributes the equation for the field B :  

E = U X H  (1 .1)  

at = V x ( ~ + w ) V B ,  (1.2) 

where u is hydrodynamic velocity; H i s  the ‘full’ field, i.e. the superposition of the 
mean, B, and fluctuating, h (h = 0) ,  magnetic fields : H = B+ h ; W) is the microscopic 
magnetic diffusivity ; the bar means averaging over an ensemble of realizations of 
random flow. 

The mean EMF ( 1 . 1 )  can be conveniently expanded in powers of spatial 
derivatives of the mean magnetic field : 

& = a B - q T V x B +  ..., (1.3) 

where dots signify spatial derivatives of the field B of second and higher orders which 
are usually neglected. We assume for simplicity in (1.3) and in what follows that the 
turbulence is statistically homogeneous and isotropic and the mean velocity equals 
zero. It follows from (1.3) that the coefficients of eddy diffusion, w ) ~ ,  and generation, 
a, of the magnetic field are sufficient to determine the mean EMF for this case. 

The literature on mean-field electrodynamics, which is vast and summarized in a 
range of monographs (e.g. Moffatt 1978; Krause & Riidler 1981 ; Zeldovich, 
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Ruzmaikin & Sokoloff 1983), contains rigorous derivations of the mean EMF in the 
quasi-linear approximation (valid for the cases of a delta-correlated-in-time random 
flow and of small magnetic Reynolds numbers) and for the case of infinite 
conductivity. For the latter case exact relations were found which express the 
coefficients qT and a in terms of fluid particle displacements in a turbulent flow 
(Moffatt 1974). The principal goal of present paper is to  generalize these results to 
allow for finite conductivities. With this aim in mind, we modify the traditional 
Lagrangian approach and express the coefficients of expansion (1.3) in terms of 
displacements of two adjacent particles which experience not only convective 
transport but a special kind of microscopic diffusion in a turbulent flow. 

These expressions are valid for arbitrary magnetic Reynolds numbers. They are 
very similar in structure to  the results by Moffatt (1974). However, the meaning of 
the averaging procedure used in them changes when magnetic diffusion is taken into 
account. We shall see that the expressions found for a, (3.13), and qT, (3.17), reduce 
to well-known results in the cases of both very large and very small magnetic 
Reynolds numbers. 

In $ 2  we shall briefly consider the case of perfect conductivity. The joint 
distribution function of two adjacent fluid particles is introduced and is shown to 
contain enough information to determine the behaviour of the magnetic field. Such 
a reformulation of magnetic field dynamics in terms of the distribution function of 
fluid particles is well suited to the subsequent allowance for finite conductivity. In 
$3 we modify the equation for this distribution function by adding a diffusional term 
and show that this modification is strictly equivalent to  allowance for finite 
molecular diffusion of the magnetic field. The eddy magnetic diffusivity and the 
coefficient a of the alpha-effect are then expressed in terms of statistical moments of 
spatial displacements of two adjacent particles which experience not only convective 
transport but also a special kind of microscopic diffusion. In  $4 the quasi-linear 
equation for the joint distribution function of two neighbouring particles is derived 
and then solved to demonstrate that the Lagrangian expressions for vT and a of $3  
reproduce known results for the case of low conductivity. The results obtained are 
discussed in $4. 

2. Lagrangian approach and distribution functions of fluid particles for 
perfectly conducting fluids 

This Section briefly considers the application of the joint distribution functions of 
two neighbouring fluid particles to a description of the dynamics of magnetic fields 
frozen to  perfectly conducting turbulent fluids. Some additional information may be 
found in a recent paper by Vainshtein & Kichatinov (1986). The derivations of the 
present Section constitute a basis for the allowance for finite conductivity made in $3. 

The induction equation for perfectly conducting fluids, 

aH 
- at = v x (u X H ) ,  

is known to have the exact solution in Lagrangian variables 

where X(a, t )  is the position a t  time t of a fluid particle, which started at a a t  t = 0, 
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and p is fluid density. As in the previous paper (Vainshtein & Kichatinov 1986), we 
change from Lagrangian to Eulerian variables x and t to exclude density from the 
Lagrangian solution (2.2) (a  is now a function of variables x and t )  and introduce the 
vector potential d for the field H which somewhat simplifies the solution (2.2) : 

H = V x d .  

Consider now the microscopic (not averaged over an ensemble of random flows) 
probability density of initial positions, y and y’,  of two liquid particles : 

f (x,x’ IY,Y’,t) = S(y-a(x, t))&y’--a(x’,t)). 

For each realization of the flow, f is the probability density of initial (at t = 0) 
positions, y and y‘, of two particles provided that a t  the present moment t they are 
at x and x’ respectively. The function f is shown in Appendix A to satisfy the 
equation 

(2.4) f+ at u(x ,  t )  . Vf + u(x’, t ) .  vy = 0 

with the initial condition 
f t - 0  = @ - y ) ~ ( x ’ - y ’ ) ,  

where V’ = a/ax’. On using the functionf, the solution (2.3) can be written as 

dP@, t )  = lim V i  f (x, x’ I y ,  y’, t )  y: d J y ,  0) dy dy’. (2.6) 
X’*Z I 

It is easy to show that (2.6) and (2.4) are equivalent to the initial induction equation 

Indeed, successive time-differentiation of (2.6), use of (2.4) to exclude af/at, and 

(2.7) 

(2.1). 

application of the relation 
lim (V + V’) f = V lim f 
x’+x x*-x 

yield 
ad 
- + u , v , d p + d a v / c u ,  = 0 .  

at 

Taking curl of this equation returns us to the initial induction equation (2.1). 
Hence, we may conclude that the distribution function of two fluid particles, 

defined by (2.4) and (2.5), contains enough information on the fluid motion to define 
the magnetic field dynamics in the case of perfect conductivity. Actually, it is 
sufficient to consider particles very close together because the limit x‘ + x is taken in 
(2.6). Vector properties of the magnetic field are accounted for by the relative 
positions of the two particles. 

The relation (2.6) may be used to express the coefficients a and vT of (1.3) in terms 
of statistical moments of displacements of the fluid particles. However, we postpone 
these derivations to $3 where finite conductivity will be taken into account. 

3. Lagrangian approach for finite conductivity 
Let us now allow €or microscopic diffusion of the magnetic field. We shall try to 

reach this goal within the Lagrangian approach of the proceding Section and keep 
(2.6) unchanged. It may be hoped that finite conductivity will be taken into account 
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by inclusion of finite diffusion of the two liquid particles considered in $2. The new 
distribution function s(x ,  x’ Iy,y’, t )  of these not only convected but also diffusing 
particles satisfies a modified equation (2.4). This modification consists in introducing 
a diffusional term, g(V +V‘)2 9, into the right-hand side of (2.4) (the initial condition 
(2.5) remains unchanged) : 

a 9  
- + u ( x , t ) . V ~ + u ( x ’ , t ) . V ’ 9  = g(V+V’)ZY)) 
at 

Ptpo = 6(x--y)S(x’ -y’ ) .  

Equation (2.6) now reads 

d, (x ,  t )  = lim Vl P ( x ,  x’ I y ,  y’, t )  yi d J y ,  0) dy dy’. 
2’*2 i 

Successive time-differentiation of (3.2) and using (3.1) yields - = limV’ - u ( x , t ) - V B - u ( x ’ ,  t ) . V ’ B + g ( V + V ’ ) 2 9 ]  y;d,(y,O)dydy’. 
P i [  (3.3) 

a d  
at 2*+2 

On using (2.7), after some algebra, we obtain from (3.3) the following equation: 

a d  
at = --U,V,d,-s8,V,u,+gV~d,. 

Taking curl of this equation gives 

- aH = V x (U x H) +vV2H. 
at (3.4) 

Therefore, relation (3.2) with the function B obeying (3.1) is strictly equivalent to the 
induction equation (3.4) with arbitrary magnetic diffusivity. 

Let us consider (3.1) in more detail. The physical content of this equation becomes 
more transparent when new variables, r = +(x + x’) and Ar = x - x’, are used : 

Only terms of first order in Ar are retained in this equation because the limit Ar -+ 0 
is taken in (3.2). Equation (3.5) describes two adjacent particles with their ‘centre 
of gravity’, r ,  undergoing convective transport with local velocity u(r, t )  and 
diffusion with coefficient 7. The changes of relative position, Ar, of these particles are 
brought about exclusively by velocity variations, Au = (au/ar,) Ar,, on the scale Ar, 
which can be considered to be the smallest one between spatial scales typical of the 
problem. It should be noted that there is no microscopic diffusion in the relative 
position Ar of the particles in (3.5). Thus, adjacent particles remains close to each 
other a t  all times; turbulent separation of particles (Batchelor 1950) is an effect of 
second order in Ar and plays no role in the problem considered. 

Ensemble averaging of (3.2) yields 

A,@, t )  = lim VL P ( x ,  x’ I y ,  y’, t )  yiA,(y, 0) dy dy’, (3.6) 

where A = s  and P = P  are respectively the mean vector potential and the 
macroscopic distribution function of the initial positions of two particles. Equation 

x’+x i 
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(3.6) relates initial and subsequent mean fields in terms of Lagrangian characteristics 
of turbulent flow. Note that (3.5) for the microscopic distribution function 9 takes 
finite conductivity into account. In common with the case of T,I = 0, it  suffices to 
know the statistics of displacements of two adjacent particles to describe the 
dynamics of the mean magnetic field. The only complication involved by allowing for 
finite magnetic viscosity, 7 4 0, is the inclusion of the particles’ centre-of-gravity 
diffusion with diffusivity equal to 7. 

Finite conductivity has been modelled previously in the framework of the 
Lagrangian approach by adding the delta-correlated-in-time spatially independent 
velocity field to the turbulent flow (Molchanov, Ruzmaikin & Sokoloff 1984; 
Drummond & Horgan 1986). Such an approach, though having no strict foundation, 
seems plausible on physical grounds. The delta-correlated-in-time spatially in- 
dependent random flow seems to represent adequately the centre-of-gravity diffusion 
of fluid particles without a diffusion in relative positions of these particles. 

The derivation of the equation for the mean magnetic field may be approached by 
averaging (3.1) or (3.5) to derive an equation for the distribution function P and by 
subsequent use of (3.6). However, averaging of the equation for 9 does not seem to 
be an easier task than averaging of the original induction equation (3.4). At the same 
time, nothing prevents us from expressing coefficients of the expansion (1.3) directly 
in terms of the distribution function P ,  the physical meaning of which is quite clear. 
This can be done by using (3.6). Actually, such an approach has been used by Moffatt 
(1974) to treat the case of infinite conductivity. 

A method of trial field distributions similar to that applied by Kraichnan (1976) 
will be followed below. Initial field distributions will be adopted, which are simple 
enough to enable the solution of (1.2), for arbitrary coefficients a and yT in (1.3) to 
be found. Comparison of these solutions with (3.6) yields expressions for a and yT in 
terms of statistical moments of the function P. 

Some introductory remarks are needed before starting these derivations. The 
notation <(x, t)  = x-a(x, t)  will be used for the particle displacements during time 
t as a function of position x. Angle brackets, ( ), means averaging over the 
distribution P. For example, 

Note that the procedures for averaging over the distribution P and over an ensemble 
of random flows (denoted above by an overbar) do not coincide. They do so, however, 
when there is no microscopic diffusion (7 = 0). Homogeneity of the turbulence 
considered implies in particular that 

( g ( 5 )  Vv(5)) = - (v(5) Vg(C)), (3.7) 

where g and v are arbitrary functions (or tensors of arbitrary rank) of the 
displacements. Indeed, 

(g(5)Vv(<)) = limV.ly(x-y)v(X’--y.)PdYdY’ 

I X‘*X 

= lim [ (V + V’) - V] g(x - y )  ~ ( x ’  - y’)  P dy dy’ 
X’*X 

= V<g(5)v(5)) - (v(5) Vg(5)), 
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and (3.7) follows because V(vg) equals zero for homogeneous turbulence. Equation 
(3.7) and isotropy of the turbulence lead to following relations: 

<Q V a  6”) = Q<e *curl<) ‘pa”, 

<$ Ca V“ t,) = &<f2 div e )  (26,%, - 8,” 8,, - q K r  L). (3.8) 

It is convenient methodologically to use an expression for the mean magnetic field 
instead of (3.6) for the mean vector potential. On taking curl of (3.6), we find 

B,(x, t )  = lim VaVh P(x ,  X’ I y ,  y’, t )  ybA,(y, 0) d r  dy’. (3.9) 
x’+x s 

Finally, note that the field distributions considered below are algebraic functions of 
coordinates of not higher than second order. Thus, the terms with spatial derivatives 
of second and higher orders, which are shown by dots in (1.3) do not have any role. 

B(r, 0) = iw x r ,  (3.10) 

where w is a constant vector of suitable dimension. On solving the induction equation 
for the mean field, we find 

(3.11) 

Let the field distribution a t  the initial moment t = 0 be 

B(r, t )  = $D x r + w 4 7 )  d7. l 
The vector potential for the field (3.10) is 

A(r,O) = -@rz. (3.12) 

Substitution of (3.11) and (3.12) into (3.9) forming a scalar product with w yield 

4 7 )  d7 = -ae, e, lim V V’ P ( x ,  x’ I y ,  y’, t )  y: y2 dy dy’, 
J O  xl*x p YJ 

where e = o/o is a unit vector. Let us differentiate this expression with respect to 
time and represent y and y’ in the integrand as y = x-4. After some algebra, with 
the use of (3.7) and (3.8), we find 

I d  
~ ( t )  =  curl<). 6 dt 

Now let the initial field distribution be 

B(r,O) = w(&F-epea)r,ra. 

(3.13) 

(3.14) 

At later moments we have 

B(r , t )  = w(&pa-epea)r,ra 

+4w ( yT(7 )+y )d7+2(rxo)  a(7)d7 

- 4w d7 d7’4 7 )  a( 7’). (3.15) 

L L 
L L  

The vector potential for the initial field (3.14) is 

A(r,O) = ~(wxr)(&,-e,e,)r,r , .  (3.16) 

Let us substitute (3.15) and (3.16) into (3.9), form the scalar product of the result 
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with the vector o, and differentiate the resulting expression with respect to time. 
After some algebra, with the use of (3.7) and (3.8), we find 

i d  i d  
6 dt 12 dt 

~ ~ ( t )  +T = -- (6’) ---(Ezdiv<) +ol(t) (3.17) 

where a is defined by (3.13). 
Expressions (3.13) and (3.17) define the coefficients of the expansion (1.3) for the 

mean EMF and thus close the induction equation (1.2). 
A more general but less transparent approach to the derivation of the mean EMF 

is demonstrated in Appendix B. The expansion (1.3) is not used there and, in 
principle, fields may be considered of spatial scale not large compared with the 
typical scale of the turbulence. For example, the coefficient y in the third term, yV’B, 
of (1.2) may be found from the results of Appendix B to be 

y = --(<.curl5) l d   curl<)' 
72 dt 

In  the limit of perfect conductivity, (3.13) and (3.17) are the same as the results 
of Moffatt (1974). The second term in the right-hand side of (3.17) differs in sign from 
that given by Moffatt (1978). However, the discrepancy is illusory. The point here 
is that Moffatt considered an incompressible fluid and averaged over final positions 
of fluid particles. The distribution function of final positions of two particles obeys 
the same equation (i.e. (2.4)) as the function f does when the velocity field is 
divergence-free. This is shown in Appendix A. Hence, the corresponding macroscopic 
distributions should coincide in this case and be invariant with respect to the 
transformation X , X ’ + U , U ’ .  It is necessary to do this transformation in (3.13) and 
(3.17) to reproduce Moffatt’s results. This transforms a/ax into a/& and changes the 
sign of the displacements <, thus reversing the sign of the second term on the right- 
hand side of (3.17). 

4. The quasi-linear approximation 
Let us now show that (3.13) and (3.17) can serve to reproduce the results of quasi- 

linear theory. Consider first the equation for the function P .  The quasi-linear 
approximation is widely used and well known. (It is sometimes named the ‘first- 
order smoothing approximation ’ or the ‘ second-order correlation approximation ’.) 
Therefore, we sidestep the derivation of the quasi-linear equation for P. It is 
sufficient to note that this equation results from ensemble averaging of (3.5) and 
substitution of the fluctuating distribution function, 89, obtained from the linearized 
equation (3.5), into the second-order moment a. The resulting equation is 
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The coefficients a and b are expressed in terms of spectra of intensity, E(k, w ) ,  and 
helicity, H(k, w ) ,  of fluctuating velocities : 

dk dw, 
E(k,  w )  k2 
, q2k4+w2 

b = !ii 

The solution of (4.1) can be expressed in the form of the integral 

P(r ,  Ar I ro, AT,, t) = exp { - (q  + b)  k2t i 
+ iz,Ar,[S,, cosh (akt) + k, k,( 1 - cosh (akt))/kz] 

+ePyz,, k,Ar,sinh (akt)/k-iz.Ar, 
+ ik . ( r  - r,)} dk d z / ( 2 ~ ) ~ .  (4.3) 

Integrations over wave vectors in (4.3) result from the use of Fourier transformations 
when solving (4.1). 

On using the distribution function (4.3), we find 

(t2) = 6(b+q)t, (<.curl<) = -6at, 

(Pdive)  = 6a2t2. 

Substitution of these expressions into (3.13) and (3.17) 
Krause & Radler 1981) results of quasi-linear theory: 

leads to the well-known (cf. 

(4.4) 

Certainly, these results are obtainable in an easier way ; e.g. by time-differentiation 
of (3.6) and subsequent use of (4.1). However, the derivations done above clearly 
demonstrate in what way different non-stationary terms in (3.17) compensate for 
each other to yield the time-independent result. 

Hence, it has been shown that Lagrangian expressions (3.13) and (3.17) lead to the 
quasi-linear result (4.4) and are particularly valid in the case of low conductivity. 

5. Discussion 
Above, we have expressed the coefficients a and qT in terms of displacements of 

two adjacent particles in a turbulent flow. These relations are valid for arbitrary 
magnetic Reynolds numbers and link different theories developed for the opposite 
limits of infinite and low conductivities. In the case of perfect conductivity the 
results obtained coincide with those reported by Moffatt (1974). At the same time, 
our findings have been shown to reproduce quasi-linear expressions for a and qT 
which are valid, in particular, in the case of small magnetic Reynolds numbers. 

Derivations of the explicit expressions for the distribution function P ,  over which 
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the liquid particle displacements are averaged when quantities a and vT are 
evaluated, is a very complicated problem. At the same time, the physical processes 
which govern the dynamics of the distribution function P are known and relatively 
simple. The centre of gravity r of neighbouring particles experiences convective 
transport with local velocity u(r, t )  and diffusion, the diffusivity 7 of which coincides 
with the coefficient of microscopic diffusion of the magnetic field. The relative 
position Ar of the particles changes owing to  fluid velocity variations on the scale Ar. 
From this picture it becomes clear that microscopic diffusion is efficient when the 
time r4 = 12/q ( 1  is the correlation length of fluctuations) equals in order of 
magnitude, or is smaller than, the smaller of the correlation time 7, of velocity 
fluctuations and the time rt = l/u of convective transport of the particles through an 
inhomogeneity. I n  particular, the order-of-magnitude estimatc of the eddy diffusivity 
of the magnetic field is - 

qT N u27, 7 = min ( T ~ ,  7,, rt). 

It should be stressed that averaging over the distribution P used above differs from 
usual averaging over an ensemble of realizations of random flow. There may be no 
turbulence at  all and ensemble averaging makes no sense in this case, but averaging 
over the function P ,  which in this case is 

is still possible and yields 

([*) = 6yt, (<.curl<) = (E2divC) = 0. 

Both averagings coincide in the case of infinite conductivities. 
This paper considers kinematic aspects of the problem. However, the approach 

used above can be applied to nonlinear dynamical problems as well if the initial 
magnetic field has no random fluctuations. (Otherwise, the Lorentz force from 
fluctuating fields would induce a statistical dependence of the flow on this field and 
we could not write 9d(y, 0) = B d ( y ,  0) to obtain (3.6).) It is natural on physical 
grounds to expect that  the mean-field dynamics reaches a universal regime (i.e. 
coefficients of the induction equation do not depend explicitly on time at moments 
of order T after the initial conditions are specified, independently of the presence or 
absence of fluctuations of the initial fields). Hence, there seem to be no difficulties of 
principle in deriving the analogues of (3.13) and (3.17) that will be valid in the 
nonlinear case. The displacements < and the distribution function P will depend 
implicitly on the magnetic field in this case. Equations (3.13) and (3.17) cannot be 
applied directly to the nonlinear regime because the Lorentz forces from the mean 
field inevitably produce the anisotropy in the turbulence (Rudiger 1974) not allowed 
for in this paper. 

-___ 

Appendix A. The kinetic equations for fluid particles 
I n  this Appendix we consider the kinetic equations for microscopic distribution 

functions of fluid particles in the absence of diffusion. In this case the many-particle 
distribution functions are products of one-particle ones. Hence, it is sufficient to 
consider the latter. 

It is easy to see that the distribution function of the final position x of a particle, 
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satisfies the equation 

% + V - u ( x , t ) q  at = 0 

(A 2) 

(A 3) 

with the initial condition 

Surprisingly. the equation for the distribution function of the initial position y of a 
particle, 

is not so easy to find. Differentiation of (A 3) with respect to time gives 

q t - 0  = S(x - a ) .  

f @ I Y , t )  = S(y-a(x , t ) )  

It is obvious that the initial position of a fluid particle does not depend on time; 
therefore 

Consequently 

It follows from (A 3) that 

Substitution of (A 6) into (A 5) yields 

Finally, we use this relation in the right-hand side of (A 4) to  obtain the desired 
equation : 

f + u . V f  at = 0. (A 7 )  

Comparison of (A 1) and (A 7 )  shows that the distributions of initial and final 
positions of fluid particles coincide in the case of an incompressible fluid when 
div u = 0. The two-particle distribution functions also coincide. Coincidence of micro- 
scopic distribution functions demands coincidence of the distributions averaged 
over an ensemble of realizations of a turbulent flow. 

Appendix B. Derivation of the equation for the mean field 
The distribution function P may be written as 

P ( x ,  x’ ly,y’, t )  = exp [iz- ( y - x )  + iz’. (y’-x’) + 8,(z, z’,p, t ) ]  d~dz’/(2n:)~,  
where J (B 1) 

8, = In (exp (iz.c(x, t )  +iz’-c(x’,t))) 

is the two-particle characteristic function which depends on x and x‘ and on the 
difierence p = x-x’ because of the statistical homogeneity of the turbulence 
considered. 
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Substitution of (B 1) into (3.6) allows us to differentiate explicitly with respect to 
x’ and pass to the limit x’+x: 

~ , ( x , t )  = [exp{iz-y+iz/.y’-ix. ( z+z’ )  
J 

y iA, (y ,  0) dy dy’dz d z ’ / ( 2 ~ ) ~ .  

It is convenient for what follows to Fourier transform this expression over x ;  
subsequent successive integrations over y, y‘, z’ and z lead to the relation 

where B,(k, t )  = 8,(k, 0, 0, t )  is the one-particle characteristic function, and 

d ( k ,  t )  = exp ( - i k . x )  A ( x ,  t )  d x / ( 2 ~ ) ~  s 
is the Fourier image of the vector potential. Let the vector potential to be divergence- 
free, k . A  = 0,  and let the characteristic function to be expanded in a series of semi- 
invariants (Kliatskin 1980). Equation (B 2) then becomes 

(B 3) 

where mpa(k) = 8+- k,, k a / k 2  is a projection tensor, 

The sign ( ), means semi-invariant. For example, 

Equation (B 3) can be uged to express the initial field in terms of the subsequent one : 

Let us differentiate (B 3) with respect to time and exclude the initial field from the 
resulting equation by use of (B 5). This yields the desired equation for the mean field : 

where dots above letters signify time derivatives. 
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Expansion of a ,  b and in powers of the wavenumber k up to terms of third order 
with allowance for isotropy of the turbulence gives 

k2 
12 

a = I+-((%div<), 

k ik3 
6 12 

b = i - (< - curl c )  -- ($(t2<- curl <) -$(t’) (5 * curl <)), 

k2 
6 

8, = --([”. 

On collecting in (B 6) the terms of first order in k, we obtain (3.13) for the coefficient 
a of the alpha-effect. The terms of second and third orders lead to (3.17) and (3.18) 
respectively. In  principle (B 6) offers the possibility of allowing for spatial derivatives 
of arbitrary order in the equation for the mean field. 
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